Quasi-concave density estimation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-Concave Density Estimation

Maximum likelihood estimation of a log-concave probability density is formulated as a convex optimization problem and shown to have an equivalent dual formulation as a constrained maximum Shannon entropy problem. Closely related maximum Renyi entropy estimators that impose weaker concavity restrictions on the fitted density are also considered, notably a minimum Hellinger discrepancy estimator ...

متن کامل

Quasi-concave Programming Quasi-concave Programming

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive o...

متن کامل

logcondens: Computations Related to Univariate Log-Concave Density Estimation

Maximum likelihood estimation of a log-concave density has attracted considerable attention over the last few years. Several algorithms have been proposed to estimate such a density. Two of those algorithms, an iterative convex minorant and an active set algorithm, are implemented in the R package logcondens. While these algorithms are discussed elsewhere, we describe in this paper the use of t...

متن کامل

A Computational Approach to Log-Concave Density Estimation

Non-parametric density estimation with shape restrictions has witnessed a great deal of attention recently. We consider the maximumlikelihood problem of estimating a log-concave density from a given finite set of empirical data and present a computational approach to the resulting optimization problem. Our approach targets the ability to trade-off computational costs against estimation accuracy...

متن کامل

Maximum likelihood estimation of a multi- dimensional log-concave density

Let X1, . . . ,Xn be independent and identically distributed random vectors with a (Lebesgue) density f. We first prove that, with probability 1, there is a unique log-concave maximum likelihood estimator f̂n of f. The use of this estimator is attractive because, unlike kernel density estimation, the method is fully automatic, with no smoothing parameters to choose. Although the existence proof ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 2010

ISSN: 0090-5364

DOI: 10.1214/10-aos814